Table of Contents
Given the infrastructure presented in the previous chapter we can create a
basic pipeline for performing transformations on abstract syntax
trees. What is missing is the actual transformations to
perform. In the Stratego/XT setting, we use the Stratego language
for defining transformations on abstract syntax trees.
In this chapter we show how to define a collection of basic term
rewrite rules, and how to combine these using the standard
innermost
strategy to simplify TIL programs.
Stratego is a modular programming languages and supports the definition of named rewrite rules. These rules can be used in many different transformations by importing the module defining them and using their names as arguments of rewriting strategies.
Module til-eval
imports the signature of TIL, which
defines the constructors of the abstract syntax of TIL. Then the
module defines rewrite rules for evaluating constructs that are
(partially) constant. For instance, the addition of two integer
constants can be reduced to the integer constant of their sum.
Figure 3.1. file: til/sim/til-eval.str
module til-eval imports TIL rules EvalAdd : Add(Int(i), Int(j)) -> Int(<addS>(i,j)) EvalAdd : Add(String(i), String(j)) -> String(<conc-strings>(i,j)) EvalSub : Sub(Int(i), Int(j)) -> Int(<subtS>(i,j)) EvalMul : Mul(Int(i), Int(j)) -> Int(<mulS>(i,j)) EvalDiv : Div(Int(i), Int(j)) -> Int(<divS>(i,j)) EvalMod : Mod(Int(i), Int(j)) -> Int(<modS>(i,j)) EvalLt : Lt(Int(i), Int(j)) -> <compare(ltS)>(i,j) EvalGt : Gt(Int(i), Int(j)) -> <compare(gtS)>(i,j) EvalLeq : Leq(Int(i), Int(j)) -> <compare(leqS)>(i,j) EvalGeq : Geq(Int(i), Int(j)) -> <compare(geqS)>(i,j) EvalEqu : Equ(Int(i), Int(j)) -> <compare(eq)>(i,j) EvalNeq : Neq(Int(i), Int(j)) -> <compare(not(eq))>(i,j) compare(s) = if s then !True() else !False() end EvalOr : Or(True(), e) -> True() EvalOr : Or(False(), e) -> e EvalAnd : And(True(), e) -> e EvalAnd : And(False(), e) -> False() AddZero : Add(e, Int("0")) -> e AddZero : Add(Int("0"), e) -> e MulOne : Mul(e, Int("1")) -> e MulOne : Mul(Int("1"), e) -> e EvalS2I : FunCall("string2int", [String(x)]) -> Int(x) where <string-to-int> x EvalI2S : FunCall("int2string", [Int(i)]) -> String(i) EvalIf : IfElse(False(), st1*, st2*) -> Block(st2*) EvalIf : IfElse(True(), st1*, st2*) -> Block(st1*) EvalWhile : While(False(), st*) -> Block([])
Another common kind of rules are desugaring rules, which define a
language construct in terms of other language constructs. Module
til-desugar
defines rules ForToWhile
and IfThenToIfElse
. The ForToWhile
rule
rewrites For
loops to a While
loop,
which requires the introduction of a new variable to hold the
value of the upperbound. The IfThenToIfElse
transforms if-then
statements into
if-then-else
statements.
Figure 3.2. file: til/sim/til-desugar.str
module til-desugar imports TIL rules ForToWhile : For(x, e1, e2, st*) -> Block([ DeclarationTyped(y, TypeName("int")), Assign(x, e1), Assign(y, e2), While(Leq(Var(x), Var(y)), <conc>(st*, [Assign(x, Add(Var(x), Int("1")))]) ) ]) where new => y IfThenToIfElse : IfThen(e, st*) -> IfElse(e, st*, []) DefaultDeclaration : Declaration(x) -> DeclarationTyped(x, TypeName("int")) WriteInt : ProcCall("writeint", [e]) -> ProcCall("write", [FunCall("int2string", [e])]) ReadInt : FunCall("readint", []) -> FunCall("string2int", [FunCall("read", [])]) BinOpToFunCall : op#([e1,e2]){t*} -> FunCall(op, [e1,e2]){t*} where <is-bin-op> op FunCallToBinOp : FunCall(op, [e1,e2]){t*} -> op#([e1,e2]){t*} where <is-bin-op> op is-bin-op = "Add" <+ "Mul" <+ "Subt" <+ "Div" <+ "Mod" <+ "Geq" <+ "Leq" <+ "Gt" <+ "Lt" <+ "Equ" <+ "Neq"
Module til-simplify
is a basic Stratego program. It
imports the til-eval
and til-desugar
modules, and the Stratego standard library (libstratego-lib
),
which defines standard rewriting strategies and additional
utilities for I/O and such.
The io-til-simplify
strategy of
til-simplify
represents the entry point for the
program when it is invoked. It uses the io-wrap
strategy to parse command-line arguments, read the input term,
and write the output term.
The til-simplify
strategy defines the actual
transformation, which is a complete normalization of the input
term with respect to the rewrite rules introduced above. The
normalization strategy chosen here is innermost
,
which exhaustively applies its argument strategy starting with
the innermost nodes of the tree.
Figure 3.3. file: til/sim/til-simplify.str
module til-simplify imports liblib til-eval til-desugar strategies io-til-simplify = io-wrap(til-simplify) til-simplify = innermost( ForToWhile <+ IfThenToIfElse <+ AddZero <+ MulOne <+ EvalAdd <+ EvalMul <+ EvalSub <+ EvalDiv <+ EvalLeq <+ EvalGeq <+ EvalEqu <+ EvalNeq <+ DefaultDeclaration <+ ReadInt <+ WriteInt )
Stratego programs are compiled to executable programs by the
Stratego compiler strc. The -I
option is used to indicate that some modules imported by this
program (TIL.str
) resides in the ../sig
directory. The -la
option is used to link the
separately compiled Stratego library.
Figure 3.4. file: til/sim/maak
#! /bin/sh -e # compile til-simplify strc -i til-simplify.str -I ../sig -la stratego-lib -m io-til-simplify
A compiled Stratego program is an ordinary executable. When the
io-wrap
strategy was used the program has a
-i
option for indicating the input file, and a
-o
option to indicate the output file. Thus, the
program reads the ATerm in the input file, transforms it, and
writes the resulting ATerm back to the output file.
The following test script shows how the til/xmpl/test1.til file is simplified, and the result pretty-printed.
Figure 3.5. file: til/xmpl/simplify-test
# simplify program ../sim/til-simplify -i test1.atil -o test1.sim.atil # check result format-check --rtg ../sig/TIL.rtg -i test1.sim.atil # parentheses ../pp/til-parenthesize -i test1.sim.atil -o test1.sim.par.atil # pretty-print ast2text -p ../pp/TIL-pretty.pp -i test1.sim.par.atil -o test1.sim.txt
Table 3.1. files: til/xmpl/test1.til, til/xmpl/test1.sim.txt
before | after |
---|---|
// TIL program computing the factorial var n; n := readint(); var x; var fact; fact := 1; for x := 1 to n do fact := x * fact; end write("factorial of "); writeint(n); write(" is "); writeint(fact); write("\n"); | var n : int; n := string2int(read()); var x : int; var fact : int; fact := 1; begin var a_0 : int; x := 1; a_0 := n; while x <= a_0 do fact := x * fact; x := x + 1; end end write("factorial of "); write(int2string(n)); write(" is "); write(int2string(fact)); write("\n"); |